Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the full Hubble diagram of photometrically classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7000 host galaxies. Based on the light-curve quality, we select 1635 photometrically identified SNe Ia with spectroscopic redshift 0.10 <z< 1.13, which is the largest sample of supernovae from any single survey and increases the number of knownz> 0.5 supernovae by a factor of 5. In a companion paper, we present cosmological results of the DES-SN sample combined with 194 spectroscopically classified SNe Ia at low redshift as an anchor for cosmological fits. Here we present extensive modeling of this combined sample and validate the entire analysis pipeline used to derive distances. We show that the statistical and systematic uncertainties on cosmological parameters are 0.017 in a flat ΛCDM model, and = (0.082, 0.152) in a flatwCDM model. Combining the DES SN data with the highly complementary cosmic microwave background measurements by Planck Collaboration reduces by a factor of 4 uncertainties on cosmological parameters. In all cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photometric classification make up less than 10% of the total systematic uncertainty budget. This result sets the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time.more » « less
-
Abstract We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 <z< 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-qualityz> 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 <z< 0.10. Using SN data alone and including systematic uncertainties, we find ΩM= 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q0< 0 in ΛCDM) with over 5σconfidence. We find in flatwCDM. For flatw0waCDM, we find , consistent with a constant equation of state to within ∼2σ. Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM,w) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ. Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses.more » « less
-
ABSTRACT Cosmological analyses of samples of photometrically identified type Ia supernovae (SNe Ia) depend on understanding the effects of ‘contamination’ from core-collapse and peculiar SN Ia events. We employ a rigorous analysis using the photometric classifier SuperNNova on state-of-the-art simulations of SN samples to determine cosmological biases due to such ‘non-Ia’ contamination in the Dark Energy Survey (DES) 5-yr SN sample. Depending on the non-Ia SN models used in the SuperNNova training and testing samples, contamination ranges from 0.8 to 3.5 per cent, with a classification efficiency of 97.7–99.5 per cent. Using the Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its extension BBC (‘BEAMS with Bias Correction’), we produce a redshift-binned Hubble diagram marginalized over contamination and corrected for selection effects, and use it to constrain the dark energy equation-of-state, w. Assuming a flat universe with Gaussian ΩM prior of 0.311 ± 0.010, we show that biases on w are <0.008 when using SuperNNova, with systematic uncertainties associated with contamination around 10 per cent of the statistical uncertainty on w for the DES-SN sample. An alternative approach of discarding contaminants using outlier rejection techniques (e.g. Chauvenet’s criterion) in place of SuperNNova leads to biases on w that are larger but still modest (0.015–0.03). Finally, we measure biases due to contamination on w0 and wa (assuming a flat universe), and find these to be <0.009 in w0 and <0.108 in wa, 5 to 10 times smaller than the statistical uncertainties for the DES-SN sample.more » « less
An official website of the United States government
